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Abstract 

INTRODUCTION: Landslides are one of the recurrent natural problems that are widespread 
throughout the world, especially in mountainous areas, and cause a significant injury to and loss 
of human life and damage to properties and infrastructures. This study aimed to assess 
landslide susceptibility using the analytic hierarchy process (AHP) in Binalood Mountains, 
Razavi Khorasan Province, Iran. 

METHODS: Since the Binalood Mountains range has a high potential for landslides occurrence, 
the present study went through to map landslide susceptibility. To accomplish this, the AHP 
method was used, and then, receiver operating characteristic/area under the curves (AUCs) 
were prepared to evaluate the performance of the susceptibility map. Multiple data, such as 
lithology, distance to faults, land use, distance to roads, altitude, slope, aspect, stream power 
index, topographic wetness index, rainfall, distance from rivers, slope length index, and 
topographic location index, were considered for delineating the landslide susceptibility maps. 
These thematic layers were assigned suitable weights on the Saaty's scale according to their 
relative importance in landslide occurrence in the study area. The assigned weights of the 
thematic layers and their features were subsequently normalized using the AHP technique. 
Finally, all thematic layers were integrated by a weighted linear combination method in a 
geographic information system tool to generate landslide susceptibility maps. 

FINDINGS: The landslide susceptibility maps are split into five classes, namely very low, low, 
moderate, high, and very high. The results showed that the geological factor was the most 
important factor affecting the occurrence of landslides in the study area. Generally, 47.8% of the 
total area was considered high and very high-risk areas. The prediction accuracy of this map 
showed the values of AUC equal to 81.7% that showed the AHP model had very good accuracy.  

CONCLUSION: Overall, AHP is acceptable for landslide susceptibility mapping in the study area. 
A landslide susceptibility map is a useful tool to help with land management in landslide-prone 
areas. The results revealed that the predicted susceptibility levels were found to be in good 
agreement with the past landslide occurrences. Possibly, this map can be used by the concerned 
authorities in disaster management planning to prepare rescue routes, service centers, and 
shelters. 

Keywords: AHP Method; Binalood Mountains; Landslide Susceptibility; ROC Curve. 
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Introduction 

andslides are dangerous geological 

disasters that pose a serious hazard to 

people’s lives and (22) and severe 

damages to property. The death toll caused 

by landslides is high worldwide (7). Due to the 

large number of deaths caused by landslides 

throughout the world, it is exigent to predict 

landslide-prone areas. Although it is impossible to 
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prevent landslide occurrences, disasters can be 

predicted and remedied using appropriate methods 

and analysis.  

Among various landslide prediction methods, 

landslide susceptibility mapping (LSM) is an 

effective land use management technique, which 

can provide favorable support for land managers 

in decision-making (9, 22). Landslide hazard  

and risk assessments start from landslide 

susceptibility mapping of the territory under 

investigation (8, 10). Generally, landslide 

susceptibility is the spatial probability of land 

sliding in a given area, depending on the 

combination of various factors, such as geology, 

land use, land cover, tectonics, slope, and aspect 

(23). Landslide susceptibility mapping is a 

helpful tool to predict and locate landslide 

occurrences. Since the LSM provides valuable 

information, local governments are inclined to 

apply it in master planning (1, 6).  

The LSM methods have been mainly divided 

into two groups, namely qualitative and 

quantitative. Qualitative methods depend on the 

opinions and judgments of experts, while 

quantitative methods conduct mathematical 

analysis and establish a probability statistical 

model to analyze the relationship between 

landslide occurrences and influencing factors (21, 

22). In this regard, geographic information 

system (GIS)-based Multi-Criteria Decision 

Making (MCDM) methods are valuable and 

ingenious approaches to change either spatial or 

non-spatial data into desired information that, 

along with the subjective judgments of decision-

makers, would be able to perform in crucial 

decisions (1, 5). The analytical hierarchy process 

(AHP) is a semi-quantitative method and is the 

most prevalent MCDM procedure (1) in which 

decisions are taken using weights through pair-

wise relative comparisons without inconsistencies 

in the decision process (11).  

As this research goes through to map landslide 

susceptibility by applying the AHP method, some 

previous studies conducted using this method 

have been mentioned in the following. Kumar et 

al. (12) used AHP to map landslide susceptibility 

in Tehrij Reservoir Rim Region, India. Based on 

the results in their study, 18% of total areas were 

located in high and very high susceptibility 

regions. Nguyen et al. (14) applied AHP to 

generate landslide susceptibility maps in the 

Chen-Yu-Lan watershed, Taiwan. The validation 

of the results by the binary classification method 

showed that the model had reasonable accuracy. 

Mandal and Mandal (13) used AHP to LSM in the 

Lish River basin of eastern Darjeeling Himalaya, 

India. To validate the results, a success rate curve 

was developed with the help of landslide 

susceptibility and cumulative percentage of 

landslide occurrence, which showed an accuracy 

level of 89.72%.  

As landslides cause a huge loss of human life and 

property annually all over the world, an accurate 

assessment of the occurrence of these extreme 

events is needed. Moreover, even a small increment 

of the prediction accuracy may control the resulting 

landslide susceptibility zones. Therefore, much more 

case studies are required to be conducted to reach a 

reasonable conclusion. Since the Binalood 

Mountains range, Razavi Khorasan Province, Iran, 

has a high potential for landslides occurrence, the 

present study went through to map landslide 

susceptibility. Landslide susceptibility is the key 

component of landslide hazard and risk assessment 

and in land use planning.  

This study discussed landslide susceptibility 

assessment and mapping using AHP in Binallood 

Mountains. Binallood Mountains is important due 

to the existence of communication roads (i.e., 

roads and national railways) to the city of 

Mashhad, Iran, development plans, factories and 

industrial estates, residential areas, gardens, and 

agricultural lands. Therefore, it is necessary to 

conduct scientific research on LSM. 

Methods 

Study Area 

The study area is located in the Binalood 

Mountains part of Razavi Khorasan Province 

(Figure 1), which covers an area of approximately 

3,500 km2 with an altitude varying from 1,095 m 

to 3,298 m above sea level. The slope angles of 

the area range from 0 to 75°. It lies between 

58°38′ E and 59°35′ E longitude, and 36°1′ N and 

36°15′ N latitude. According to the Iran 

Meteorological Organization, the study area has a 

cold and semi-arid climate. The mean annual 

rainfall is around 320 mm, and the mean annual 

temperature is 13°C (Zomorodian, 2013). The 

study area is covered by various types of 

lithologic formations. The main lithologies are 

Conglomerate, tuff, slate, phyllite, marlstone, 

sandstone, shale, grayish limestone, and 

quaternary terraces (24). 
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Figure 1. Location map of the study area (Authors) 

 

Methodology 

The research aimed to obtain the LSM in 

Binallood Mountain using the AHP method 

which had already satisfactory results in 

analyzing natural phenomena.  Landslide 

susceptibility mapping in the present study was 

as conducted in the following steps: 

Landslide information (landslide inventory 

map) was collected.  

The factors affecting the occurrence of landslides 

were identified, and then, information related to 

these factors was gathered, and the effect of each of 

these factors on the landslide phenomenon was 

evaluated. The layers of effective parameters were 

prepared using ArcMap10.5, SAGA, Google Earth, 

and Arc SWAT. 

The preference of different factors on 

landslide occurrence was determined using the 

AHP method. The influence weights of 

variables were calculated.  

The influence weight of each layer was 

multiplied in each parameter using raster 

calculator tools in the GIS tool. At the next 

step, landslide susceptibility index (LSI) was 

calculated weighted arithmetic sum method 

which can be formulated as given below: 

LSI = ∑ weight of factor (Wj) * weight of 

factor classes (Wij) (1) where Wij denotes the 

weight of the class of factor J. The LSI map was 

classified into very low, low, moderate, high, 

and very high susceptibility classes employing 

the natural break classification method in the 

ArcGIS software.  

At the end of this study, a receiver operating 

characteristic (ROC) curve was used to evaluate the 

performance of the landslide susceptibility map.  

These steps are explained below. 

 

Landslide inventory map 

Landslide inventory maps can be prepared 

either by collecting historical information of 

individual landslide events or using satellite 

imageries and aerial photographs coupled with 

field surveys by the global position system. In 

the study area, the landslides were identified 

from aerial photographs of 1964 on a scale of 

1:20000 by the General Department of Natural 

Resources of Razavi Khorasan Province. This 

map was modified through field surveys and 

Google Earth images (Figure 2). 

 

Predisposing factors 

A landslide is a complex phenomenon that 

occurs due to several factors (16). The selection of 

landslide influencing factors has an important 

impact on the final LSM (15). In this study, 13 

landslide influencing factors were considered 

(Table 1), including lithology, distance to faults, 

land use, distance to roads, altitude, slope, aspect, 

stream power index (SPI), topographic wetness 

index (TWI), rainfall, distance from rivers, slope 

length index (LS), topographic location index (TPI).  
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Figure 2. Factors used to identify the landslide susceptible areas in the present study (authors) 
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Table 1. Causative factors of landslide in the study area 

No Factor Description 

1 Lithology 

Geology plays a highly important role in landslide susceptibility studies since different lithological 

classes vary among themselves in terms of mechanical and hydraulic characteristics (18). Rock 

units in the study area were digitized from geological maps with a 1:100000 scale from the 

Geological Survey of Iran (Figure 2). 

2 
Distance to 

faults 

Faults increase landslide susceptibility because the rocks near a fault are weaker, due to intense 

shearing (11). Faults were extracted from the geological map of Neishabour, Iran, with a 1:100000 

scale. There are several faults in the study area. By increasing the distance from faults, their effect 

on landslide susceptibility decreases; therefore, a fault buffer map was also generated in ArcGIS 

(Figure 2). 

3 Land use 

Land use is an important factor for landslide susceptibility. This factor has both positive and 

negative roles in the landslide occurrence. The land cover would cause the slopes to stabilize or 

may lead the slopes to be unstable (1, 22). In the current study, this layer was prepared from the 

General Department of Natural Resources of Razavi Khorasan Province, and then, modified using 

Google Earth images (Figure 2). 

4 
Distance to 

roads 

The construction of road activities is cutting the slopes. The natural slopes are disturbed due to 

these human activities. The slopes near the road are more susceptible to landslide occurrence (16). 

In this study, the distance of the road map was extracted through Google Earth images; 

consequently, a buffer map was generated in ArcGIS (Figure 2). 

5 Altitude 
Altitude is also a factor that can cause landslides occurrence. The altitude layer was extracted from 

study area DEM in the ArcGIS software (Figure 2). 

6 Slope 

Slope is one of the most important parameters which influences landslide occurrence. The slope angles 

from 35' to 45' are more susceptible to failure. There are seldom slope failures for the slopes with an 

angle less than 15' (16). The slope map is extracted from the DEM of the study area (Figure 2). 

7 Aspect 

Aspect affects the susceptibility of landslide indirectly or directly. It influences the evaporation and 

absorption of water (16). The direction of a slope can be related to the causative factors of landslides. 

In this study, the aspect map was extracted from the DEM of the study area (Figure 2). 

8 

Stream 

Power 

Index 

Stream power index controls the potential erosive power of the overland flow. Therefore, this factor can 

be considered as one of the factors of landslide occurrence (17). The SPI map was produced using the 

study area Digital Elevation Model (DEM) in GIS-SAGA software (Figure 2). 

9 

Topographic 

Wetness 

Index 

The topographic wetness index (TWI) has been used to describe the effect of topography on the 

location and size of saturated source areas of runoff generation (17). It is a commonly used tool to 

forecast the amount of soil moisture. The TWI layer was produced using study area DEM in GIS-

SAGA software (Figure 2). 

10 Rainfall 

Rainfall is the most important landslide triggering parameter that increases pore-water pressure and 

causes soil saturation and runoff through the infiltration of water into the soil (1). In this study, to 

obtain the rainfall layer, the average annual precipitation data of Razavi Khorasan Province were 

gathered from the General Department of Natural Resources of Razavi Khorasan Province. 

Afterward, this layer was extracted in ArcGIS through the Inverse Distance Weighting 

interpolation method (Figure 2). 

11 
Distance to 

rivers 

The distance from rivers is considered a causative factor of landslides occurrence. Run-off of the 

rivers causes slope failure in the study area (16). Streams may adversely affect stability by eroding 

the slopes or saturating the lower part of the material. An increase in the distance from rivers 

causes a decrease in their effect on landslide susceptibility; therefore, a river buffer map was also 

generated in ArcGIS (Figure 2). 

12 
Slope 

Length 

A relationship is relevant between landslides and the SL. It is thought that an increase in the height 

and SL leads to a growth in slope instability (2). The slope length layer was produced using study 

area DEM in GIS-SAGA software (Figure 2). 

13 

Topographic 

Position 

Index 

The topographic position index is computed as a difference between the cell elevation and mean 

elevation of neighboring cells. To categorize existing topographic landforms (i.e., slope, ridge, and 

valley) specific values of thresholds are needed to be defined (19). Topographic position index was 

employed in this study to identify ridge, lower flat, valley, and side slope. The topographic position 

index layer was produced using study area GIS-SAGA software (Figure 2). 
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Table 2. Scale of relative importance suggested by Saaty (12) 

Scale Degree of Preference Explanation 

1 

3 

5 

7 

9 

2, 4, 6 

Equally 

Moderately 

Strongly 

Very strongly 

Extremely 

Intermediate 

Factors inherit equal contribution 

One factor moderately favors over others 

Judgment strongly favors over others 

One factor very strongly favors over others 

One factor favors over others in the highest degree 

Compensation between weights 1, 3, 5, 7, and 9 

 

Analytic hierarchy process method 

A nine-point scale, provided by Saaty, is used 

for the pairwise comparison of causative factors. 

Table 2 presents the nine points of Saaty’s scale. 

The AHP consists of three main steps, including 

generating the pair-wise comparison matrix, 

computing the weights of the criterion, and 

estimating the consistency ratio (18). One of the 

important aspects of the AHP principle is the 

calculation of consistency index (CI) and 

consistency ratio (CR). If CR is greater than 0.1, 

the comparison matrix is inconsistent and should 

be revised (11). 
 

CI = λmax – N/ (N – 1)   (2) 

CR = CI/RI       (3) 
 

where λmax is the maximum eigenvalue and N 

is the number of elements present in the 

row/column of the matrix. In eq. 3, RI stands for 

random index. 
 

Efficiency of the landslide susceptibility map 

The prediction of landslide susceptibility map 

is usually produced using independent 

information that is not available for building the 

model. One of the ways to validate the landslide 

susceptibility map is the ROC value and the area 

under the ROC curve (17). In this study, the ROC 

curve was applied as a worthy tool for appraising 

the validation of landslide susceptibility maps 

derived from the AHP method. The receiver 

operating characteristic curve is mostly used to 

show the connection between specificity and 

sensitivity in a graphical way (1). The area under 

the curve (AUC) gives a good idea of how well 

the model performance is and varies from 0.5 to 1. 

The closeness of AUC values to 1 indicates a 

better performance of prediction models. 

Findings 

The present research is based on the use of 

AHP method for landslide susceptibility map 

(LSM) in the Binallood Mountains. The 

preference values for the present study are 

tabulated in Table 2. The top part of Table 3 is the 

comparison of causative factors, and the 

remainder of Table 2 is the comparison of the 

classes in each factor. These weight values 

indicate the importance of a class or a factor. 

According to Table 3, geology is the most 

important causative factor followed by slope, 

fault, rainfall, and aspect, while causative factors, 

such as distance from road and altitude, are less 

important. Table 3 shows that all CR values are 

less than 0.1, which demonstrates that the 

preferences used to produce the comparison 

matrices were consistent. 

 

 

Table 3. AHP weights of factors/classes and consistency ratio 
Factors Classes Weight CR 

Main factors 

Geology 

Slope 

Fault 

Rainfall 

Aspect 

TPI 

Topographic indexes 

Distance to river 

Land use 

Altitude 

Road 

0.209 

0.202 

0.133 

0.106 

0.074 

0.055 

0.050 

0.045 

0.033 

0.030 

0.016 

0.08 

Geology 

Soft rocks 

Loose sediments 

Hard rocks 

0.661 

0.231 

0.108 
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Table 3. Continued 

Rainfall 

<250 mm/year 

250-300 mm/year 

300-350 mm/year 

350-400 mm/year 

400-450 mm/year 

450-500 mm/year 

0.045 

0.065 

0.101 

0.161 

0.252 

0.376 

0.01 

Altitude 

<1500 m 

1500-2000 m 

2000-2500 m 

2500-3000 m 

>3000 m 

0.046 

0.107 

0.209 

0.388 

0.251 

0.05 

Aspect 

N 

NE 

NW 

E 

SE 

SW 

S 

W 

Flat 

0.283 

0.213 

0.156 

0.102 

0.072 

0.056 

0.054 

0.046 

0.017 

0.06 

Distance to river 

<300 m 

300-600 m 

600-900 m 

900-1200 m 

>1200 m 

0.502 

0.239 

0.127 

0.079 

0.052 

0.04 

Distance to road 

<100 m 

100-200 m 

200-300 m 

300-400 m 

>400 m 

0.441 

0.272 

0.138 

0.090 

0.06 

0.03 

Land use 

Barely 

Woodland (very poor) 

Very poor forest 

Poor rang 

Moderate range 

Dry farming 

Mix (dry farming-orchard) 

Orchard 

Water farming 

Rock 

Urban 

0.216 

0.175 

0.168 

0.150 

0.136 

0.037 

0.029 

0.027 

0.023 

0.02 

0.019 

0.03 

Slop 

<5 

5-15 

15-30 

>30 

0.055 

0.126 

0.447 

0.372 

0.05 

Topographic indexes 

SPI 

TWI 

LS 

0.49 

0.321 

0.189 

0.03 

Distance to fault 

<500 m 

500-1000 m 

1000-1500 m 

1500-2000 m 

>2000 m 

0.43 

0.261 

0.163 

0.089 

0.056 

0.01 

 

AHP: Analytical hierarchy process; CR: Consistency ratio; TPI: Topographic location index; SPI: Stream power index; 

TWI: Topographic wetness index; LS: Slope length 
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Table 4. Area and percent of landslide susceptibility 

classes 
Susceptibility classes Area (km2) Percent 

Very low 1079.7 30.9 

Low 277.9 7.9 

Moderate 468.8 13.4 

High 979.8 28 

Very high 685.6 19.8 

 

Raster maps of each factor were assigned weight 

values. The landslide susceptibility index map 

containing numerical susceptibility information was 

prepared using eq. 1. In this map, higher LSI values 

indicated high susceptibility and lower values 

represented low susceptibility (Figure 4).  

Landslide susceptibility index values were 

found in the range of 0.08-0.43 (Figure 4). Natural 

break classifier was used to calculate class break 

values of the continuous LSI map, which is 

depicted in Figure 4, and accordingly, the LSI map 

was classified into five categories, namely very 

high susceptibility, high susceptibility, moderate 

susceptibility, low susceptibility, and very low 

susceptibility (Figure 4). It was revealed that 3%, 

15%, 25%, 34%, and 23% of the entire area 

belonged to very high susceptibility, high 

susceptibility, moderate susceptibility, low 

susceptibility, and very low susceptibility 

classes, respectively (Table 4).  
 

Validation of the landslide susceptibility map 

Accuracy of landslide susceptibility map is the 

capability of a map to delineate landslide-free  

and landslide-susceptible areas. Validation was 

performed to obtain the accuracy of the landslide 

susceptibility map (12). Accuracy depends on 

input data, model accuracy, size of the study area, 

and experience of professionals. In this study, the 

ROC curve was applied as a worthy tool  

for appraising the validation of landslide 

susceptibility maps derived from the AHP 

method. The AUC was estimated at 0.817, which 

meant that the overall success rate of the landslide 

susceptibility zonation map was 81.7% (Figure 3). 

To evaluate the landslide susceptibility map, 

this map was combined with the landslide 

inventory map of the study area (Figure 5). The 

results showed that 0.31%, 4.9%, 12%, 38.3%, and 

44.49% of the entire landslide inventory was found  
 

 
Figure 3. Threshold values for the classification of LSI map and ROC curves of LSM derived from the AHP method (Authors) 

 

 
Figure 4. Landslide susceptibility map and landslide susceptibility map of the study area (Authors) 
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Figure 5. Landslide susceptibility map and landslide 

inventory map of the study area (Authors) 

 
in the very low, low, moderate, high, and very 

high susceptibility classes, respectively (Table 5), 

meaning that landslide susceptibility map had 

acceptable efficiency. 

 
Table 5. Number and percent of landslide in per class 

of landslide susceptibility 

Susceptibility 

classes 

Number of 

landslides 
Percent 

Very low 3 0.31 

Low 47 4.9 

Moderate 116 12 

High 368 38.3 

Very high 427 44.49 

Discussion and Conclusion 

Landslide susceptibility mapping is important 

for visualizing potentially landslide-prone areas in 

mountainous and hilly terrain (10). This study 

provided insights into the capability of AHP in 

predicting landslide susceptible areas. In this 

regard, 13 triggering factors were considered, 

including geology aspect, altitude, land use, slope, 

distance from the road, distance from faults, 

distance from the river, TPI, TWI, LS, SPI, and 

annual rainfall. The selection of these 13 factors 

was based on the availability of data for the study 

area and the relevance with respect to landslide 

occurrences. According to the calculation using 

AHP, the geology was the most influencing data 

for landslide occurring by the weight of 0.209, 

then slope, fault, and rainfall by the weights of 

0.202, 0.133, and 0.106, respectively. The value 

of ratio consistency was about 0.08 (less than 0.1), 

which showed that the weight was valid and 

acceptable used in spatial analysis.  

Based on the map of landslide susceptibility, 

30.9%, 7.9%, 13.4%, 28%, and 19.8% of the 

entire area were found in the very low, low, 

moderate, high, and very high susceptibility 

classes, respectively. According to the findings, 

very high and high susceptibility classes were 

observed in the Mayan series formation that 

consisted of mostly weathered phyllites and 

shales, which are inherently failure-prone. A 

similar finding was reported in previous studies 

(15, 21), according to which geological factor was 

one of the factors affecting landslides. 

In the discussion of slopes, at lower slopes, the 

force of gravity is less than the resistance forces 

and at slopes more than 30, due to climatic 

conditions and vegetation in Binalood Mountains, 

soil formation is less. Therefore, in Binalood 

Mountains most of the highly susceptible areas 

are observed in 15-30 slope class. Furthermore, 

in the study area, high susceptible areas were 

located in high altitude classes. High altitudes are 

often rendered unstable by the influence of 

triggering factors, such as rainfall and 

earthquakes. Based on iso-rainfall (Figure 2), in 

the Binalood Mountains, most of the rainfall 

occurred at high altitudes. According to the results 

of previous studies (7, 11), altitudes were among 

the factors affecting landslides. Considering this 

finding, high and very high susceptibility classes 

are observed in the north aspect. Since the 

Binalood Mountains range is located in the 

northern hemisphere, the north aspect is receiving 

less sun radiation and high rainfall. 

Among the topographic indexes, higher 

susceptibility classes were reported in the higher 

SPI and TWI ranges. An increase in TWI ranges 

boosts water infiltration which often leads to an 

increase in the pore water pressure and further 

reduces the soil strength, hence making the terrain 

prone to slope failures. Stream power index 

indicates the erosive power of the streams, and 

higher ranges of SPI are related to the high 

erosive power of the streams.  

Since there are several roads and waterways in 

Binalood Mountains, it is expected that high 

susceptibility classes be observed in the areas 

closer to rivers. This can be attributed to the 

stream bank erosion which further leads to 

landslides. Due to slope failure, landslides may 

occur on the road and the side of the slopes 
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affected by roads. In this respect, high 

susceptibility classes are observed in the areas 

closer to roads. Similar findings were reported in 

a previous study regarding the effect of roads and 

waterways on landslides (1). Among the land use 

classes, bare and very poor woodland areas have 

high susceptibility.  

In the present study, the ROC curve method 

was used to validate the accuracy of landslide 

susceptibility map. The results of the present 

study revealed that the landslide susceptibility 

map presented good performance in landslide 

susceptibility assessment (AUC=0.817). In the 

end, the observed landslide map was overlayed 

with the landslide susceptibility map. The results 

of LSM were also found to be matching with the 

field conditions. Overall, AHP was acceptable for 

landslide susceptibility mapping in the study area. 

The produced LSM in this study can be a good 

source for decision-makers, planners, and 

engineers. This map provides valuable 

information so that attention can be paid to the 

high and very high susceptible zones for any kind 

of developmental work. 
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